有你在真好 的个人博客
数据库sql优化总结之百万级数据库优化方案+案例分析
阅读:2083 添加日期:3/30/2021 5:52:23 PM

项目背景

有三张百万级数据表

知识点表(ex_subject_point)9,316条数据

试题表(ex_question_junior)2,159,519条数据 有45个字段

知识点试题关系表(ex_question_r_knowledge)3,156,155条数据

测试数据库为:mysql (5.7)

1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

案例分析:


  1. SELECT ex_question_junior.QUESTION_ID
  2. FROM ex_question_junior
  3. WHERE ex_question_junior.GRADE_ID=1

执行时间:17.609s (多次执行,在17s左右徘徊)

优化后:给GRADE_ID字段添加索引后

执行时间为:11.377s(多次执行,在11s左右徘徊)

备注:我们一般在什么字段上建索引?

这是一个非常复杂的话题,需要对业务及数据充分分析后再能得出结果。主键及外键通常都要有索引,其它需要建索引的字段应满足以下条件:

a、字段出现在查询条件中,并且查询条件可以使用索引;

b、语句执行频率高,一天会有几千次以上;

c、通过字段条件可筛选的记录集很小,那数据筛选比例是多少才适合?

这个没有固定值,需要根据表数据量来评估,以下是经验公式,可用于快速评估:

小表(记录数小于10000行的表):筛选比例<10%;

大表:(筛选返回记录数)<(表总记录数*单条记录长度)/10000/16

单条记录长度≈字段平均内容长度之和+字段数*2

以下是一些字段是否需要建B-TREE索引的经验分类:

数据库sql优化总结之百万级数据库优化方案+案例分析

2、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描

select id from t where num is null

最好不要给数据库留NULL,尽可能的使用 NOT NULL填充数据库.

备注、描述、评论之类的可以设置为 NULL,其他的,最好不要使用NULL。

不要以为 NULL 不需要空间,比如:char(100) 型,在字段建立时,空间就固定了, 不管是否插入值(NULL也包含在内),都是占用 100个字符的空间的,如果是varchar这样的变长字段, null 不占用空间。

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num = 0

案例分析:

在mysql数据库中对字段进行null值判断,是不会放弃使用索引而进行全表扫描的。


  1. SELECT ex_question_junior.QUESTION_ID
  2. FROM ex_question_junior
  3. WHERE IS_USE is NULL

执行时间是:11.729s


  1. SELECT ex_question_junior.QUESTION_ID
  2. FROM ex_question_junior
  3. WHERE IS_USE =0

执行时间是12.253s

时间几乎一样。

3、应尽量避免在 where 子句中使用 != 或 <> 操作符,否则将引擎放弃使用索引而进行全表扫描。

案例分析:

在mysql数据库中where 子句中使用 != 或 <> 操作符,引擎不会放弃使用索引。


  1. EXPLAIN
  2. SELECT ex_question_junior.QUESTION_ID
  3. FROM ex_question_junior
  4. WHERE ex_question_junior.GRADE_ID !=15
数据库sql优化总结之百万级数据库优化方案+案例分析

执行时间是:17.579s

数据库sql优化总结之百万级数据库优化方案+案例分析

执行时间是:16.966s

4.应尽量避免在 where 子句中使用 or 来连接条件,如果一个字段有索引,一个字段没有索引,将导致引擎放弃使用索引而进行全表扫描

案例分析:

GRADE_ID字段有索引,QUESTION_TYPE没索引

数据库sql优化总结之百万级数据库优化方案+案例分析

执行时间是:11.661s

优化方案:

通过union all 方式,把有索引字段和非索引字段分开。索引字段就有效果了

数据库sql优化总结之百万级数据库优化方案+案例分析

执行时间是:11.811s

但是,非索引字段依然查询速度会很慢,所以查询条件,能加索引的尽量加索引

5.in 和 not in 也要慎用,否则会导致全表扫描

案例分析

注:在mysql数据库中where 子句中对索引字段使用 in 和 not in操作符,引擎不会放弃使用索引。

数据库sql优化总结之百万级数据库优化方案+案例分析

注:在mysql数据库中where 子句中对不是索引字段使用 in 和 not in操作符,会导致全表扫描。

数据库sql优化总结之百万级数据库优化方案+案例分析

案例分析2:

用between和in的区别


  1. SELECT ex_question_junior.QUESTION_ID
  2. FROM ex_question_junior
  3. WHERE ex_question_junior.QUESTION_TYPE IN(1,2,3,4)

执行时间为1.082s


  1. SELECT ex_question_junior.QUESTION_ID
  2. FROM ex_question_junior
  3. WHERE ex_question_junior.QUESTION_TYPE between 1 and 4

执行时间为0.924s

时间上是相差不多的

案例分析3:

用exists 和 in区别:结论1. in()适合B表比A表数据大的情况2. exists()适合B表比A表数据小的情况当A表数据与B表数据一样大时,in与exists效率差不多,可任选一个使用.语法

select * from A

where id in(select id from B)

ex_question_r_knowledge表数据量大,ex_subject_point表数据量小

****************************************************************************


  1. SELECT *
  2. FROM ex_question_r_knowledge
  3. WHERE ex_question_r_knowledge.SUBJECT_POINT_ID IN
  4. (
  5. SELECT ex_subject_point.SUBJECT_POINT_ID
  6. FROM ex_subject_point
  7. WHERE ex_subject_point.SUBJECT_ID=7
  8. )

  1. SELECT *
  2. FROM ex_question_r_knowledge
  3. WHERE exists
  4. (
  5. SELECT 1
  6. FROM ex_subject_point
  7. WHERE ex_subject_point.SUBJECT_ID=7
  8. AND ex_subject_point.SUBJECT_POINT_ID = ex_question_r_knowledge.SUBJECT_POINT_ID
  9. )

SELECT *

FROM ex_question_r_knowledge

WHERE exists

(

SELECT 1

FROM ex_subject_point

WHERE ex_subject_point.SUBJECT_ID=7

AND ex_subject_point.SUBJECT_POINT_ID = ex_question_r_knowledge.SUBJECT_POINT_ID

)

执行时间是:13.537s

*************************************************************************

用in适合


  1. SELECT *
  2. FROM ex_subject_point
  3. WHERE
  4. ex_subject_point.SUBJECT_POINT_ID IN( SELECT
  5. ex_question_r_knowledge.SUBJECT_POINT_ID FROM
  6. ex_question_r_knowledge WHERE
  7. ex_question_r_knowledge.GRADE_TYPE=2 )

SELECT * FROM ex_subject_point WHERE

ex_subject_point.SUBJECT_POINT_ID IN( SELECT

ex_question_r_knowledge.SUBJECT_POINT_ID FROM

ex_question_r_knowledge WHERE

ex_question_r_knowledge.GRADE_TYPE=2 )

执行时间是:1.554s

SELECT *

FROM ex_subject_point

WHERE exists(

SELECT ex_question_r_knowledge.SUBJECT_POINT_ID

FROM ex_question_r_knowledge

WHERE ex_question_r_knowledge.GRADE_TYPE=2

AND ex_question_r_knowledge.SUBJECT_POINT_ID= ex_subject_point.SUBJECT_POINT_ID

)

执行时间是:11.978s

6、like模糊全匹配也将导致全表扫描

案例分析


  1. EXPLAIN
  2. SELECT *
  3. FROM ex_subject_point
  4. WHERE ex_subject_point.path like "%/11/%"
数据库sql优化总结之百万级数据库优化方案+案例分析

若要提高效率,可以考虑全文检索。lucene了解一下。或者其他可以提供全文索引的nosql数据库,比如tt server或MongoDB

还会陆续更新,还有几个小节。

昨天晚上突发奇想,like 模糊全匹配,会导致全表扫描,那模糊后匹配和模糊前匹配也会是全表扫描吗?

今天开电脑,做了下测试。结果如下:

like模糊后匹配,不会导致全表扫描

like模糊前匹配,会导致全表扫描

MY SQL的原理就是这样的,LIKE模糊全匹配会导致索引失效,进行全表扫描;LIKE模糊前匹配也会导致索引失效,进行全表扫描;但是LIKE模糊后匹配,索引就会有效果。

限于本人水平,如果文章和代码有表述不当之处,还请不吝赐教。