有你在真好 的个人博客
程序员算法之十大经典排序算法(中)
阅读:2206 添加日期:2021/3/27 23:22:04 原文链接:https://www.toutiao.com/item/6531670144341508622/

4、希尔排序(Shell Sort)

1959年Shell发明,第一个突破O(n^2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序。

希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版》的合著者Robert Sedgewick提出的。 

4.1 算法描述

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;

  • 按增量序列个数k,对序列进行k 趟排序;

  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

4.2 过程演示

程序员算法之十大经典排序算法(中)

4.3 代码实现

function shellSort(arr) {

var len = arr.length,

temp,

gap = 1;

while(gap < len/3) { //动态定义间隔序列

gap =gap*3+1;

}

for (gap; gap> 0; gap = Math.floor(gap/3)) {

for (var i = gap; i < len; i++) {

temp = arr[i];

for (var j = i-gap; j > 0 && arr[j]> temp; j-=gap) {

arr[j+gap] = arr[j];

}

arr[j+gap] = temp;

}

}

return arr;

}

4.4 算法分析

最佳情况:T(n) = O(nlog2 n) 最坏情况:T(n) = O(nlog2 n) 平均情况:T(n) =O(nlog n) 

5、归并排序(Merge Sort)

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

5.1 算法描述

  • 把长度为n的输入序列分成两个长度为n/2的子序列;

  • 对这两个子序列分别采用归并排序;

  • 将两个排序好的子序列合并成一个最终的排序序列。

5.2 动图演示

程序员算法之十大经典排序算法(中)

5.3 代码实现

function mergeSort(arr) { //采用自上而下的递归方法

var len = arr.length;

if(len < 2) {

return arr;

}

var middle = Math.floor(len / 2),

left = arr.slice(0, middle),

right = arr.slice(middle);

return merge(mergeSort(left), mergeSort(right));

}

function merge(left, right)

{

var result = [];

while (left.length>0 && right.length>0) {

if (left[0] <= right[0]) {

result.push(left.shift());

} else {

result.push(right.shift());

}

}

while (left.length)

result.push(left.shift());

while (right.length)

result.push(right.shift());

return result;

}

5. 4 算法分析

最佳情况:T(n) = O(n) 最差情况:T(n) = O(nlogn) 平均情况:T(n) = O(nlogn)

6、快速排序(Quick Sort)

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

6.1 算法描述

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

  • 从数列中挑出一个元素,称为 “基准”(pivot);

  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

5.2 动图演示

程序员算法之十大经典排序算法(中)

5.3 代码实现

function quickSort(arr, left, right) {

var len = arr.length,

partitionIndex,

left = typeof left != 'number' ? 0 : left,

right = typeof right != 'number' ? len - 1 : right;

if (left < right) {

partitionIndex = partition(arr, left, right);

quickSort(arr, left, partitionIndex-1);

quickSort(arr, partitionIndex+1, right);

}

return arr;

}

function partition(arr, left ,right) { //分区操作

var pivot = left, //设定基准值(pivot)

index = pivot + 1;

for (var i = index; i <= right; i++) {

if (arr[i] < arr[pivot]) {

swap(arr, i, index);

index++;

}

}

swap(arr, pivot, index - 1);

return index-1;

}

function swap(arr, i, j) {

var temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

5.4 算法分析

最佳情况:T(n) = O(nlogn) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(nlogn) 

7、堆排序(Heap Sort)

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

7.1 算法描述

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;

  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];

  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

7.2 动图演示

程序员算法之十大经典排序算法(中)

7.3 代码实现

var len; //因为声明的多个函数都需要数据长度,所以把len设置成为全局变量

function buildMaxHeap(arr) { //建立大顶堆

len = arr.length;

for (var i = Math.floor(len/2); i >= 0; i--) {

heapify(arr, i);

}

}

function heapify(arr, i) { //堆调整

var left = 2 * i + 1,

right = 2 * i + 2,

largest = i;

if (left < len && arr[left] > arr[largest]) {

largest = left;

}

if (right < len && arr[right] > arr[largest]) {

largest = right;

}

if (largest != i) {

swap(arr, i, largest);

heapify(arr, largest);

}

}

function swap(arr, i, j) {

var temp = arr[i];

arr[i] = arr[j];

arr[j] = temp;

}

function heapSort(arr) {

buildMaxHeap(arr);

for (var i = arr.length-1; i > 0; i--) {

swap(arr, 0, i);

len--;

heapify(arr, 0);

}

return arr;

}

7.4 算法分析

最佳情况:T(n) = O(nlogn) 最差情况:T(n) = O(nlogn) 平均情况:T(n) = O(nlogn)

ICP备案号:苏ICP备14035786号-1 苏公网安备 32050502001014号